

<u>First session 1</u> Foundations Of Engineering Economy

SEVENTH EDITION ENGINEERING ECONOMY

Leland Blank • Anthony Tarquin

Instructor:

ehsan sheybani sheybani.ehsan@yahoo.com

Office Hours: Course Website: 10:00-13 Sundays, Ferdowsi University http://www. Krrtf.ir & http:// newdeal.blogfa.com

Course Text: Engineering Economy, 7th edition, by Leland Blank & Anthony Tarquin

Time Value of Money (TVM)

Interest rate

Terms and symbols

Cash flows

Economic equivalence

Simple and compound interest

Minimum attractive rate of return

Spreadsheet functions

Time Value of Money (TVM)

Description: TVM explains the change in the amount of money over time for funds owed by or owned by a corporation (or individual)

- Corporate investments are expected to earn a return
- Investment involves money
- Money has a 'time value'

The time value of money is the most important concept in engineering economy

Interest and Interest Rate

Interest – the manifestation of the time value of money

- Fee that one pays to use someone else's money
- Difference between an ending amount of money and a beginning amount of money

Interest = amount owed now – principal

Interest rate – Interest paid over a time period expressed as a percentage of principal

Interest rate (%) =
$$\frac{\text{interest accrued per time unit}}{\text{principal}} \times 100\%$$

Interest earned over a period of time is expressed as a percentage of the original amount (principal)

Rate of return (%) = $\frac{\text{interest accrued per time unit}}{\text{original amount}} \ge 100\%$

Borrower's perspective – interest rate paid

Lender's or investor's perspective – rate of return earned

Interest rate

Rate of return

Commonly used Symbols

- **t** = time, usually in periods such as years or months
- P = value or amount of money at a time *t* designated as present or time 0
- F = value or amount of money at some future time, such as at t = n periods in the future
- A = series of consecutive, equal, end-of-period amounts of money
- **n** = number of interest periods; years, months
- i = interest rate or rate of return per time period; percent per year or month

Cash Flows: Terms

Cash Inflows – Revenues (R), receipts, incomes, savings generated by projects and activities that flow in. Plus sign used

Cash Outflows – Disbursements (D), costs, expenses, taxes caused by projects and activities that flow out. Minus sign used

Net Cash Flow (NCF) for each time period:
NCF = cash inflows – cash outflows = R – D

End-of-period assumption: Funds flow at the end of a given interest period

Cash Flows: Estimating

Point estimate – A single-value estimate of a cash flow element of an alternative
 Cash inflow: Income = \$150,000 per month

 Range estimate – Min and max values that estimate the cash flow

Cash outflow: Cost is between \$2.5 M and \$3.2 M

Point estimates are commonly used; however, range estimates with probabilities attached provide a better understanding of variability of economic parameters used to make decisions

Cash Flow Diagrams

What a typical cash flow diagram might look like

Economic Equivalence

Definition: Combination of interest rate (rate of return) and time value of money to determine different amounts of money at different points in time that are economically equivalent

How it works: Use rate *i* and time *t* in upcoming relations to move money (values of P, F and A) between time points *t* = 0, 1, ..., n to make them equivalent (not equal) at the rate *i*

\$100 now is economically equivalent to \$110 one year from now, if the \$100 is invested at a rate of 10% per year.

Simple and Compound Interest

Simple Interest

Interest is calculated using principal only Interest = (principal)(number of periods)(interest rate) I = Pni

Example: \$100,000 lent for 3 years at simple *i* = 10% per year. What is repayment after 3 years?

Interest = 100,000(3)(0.10) = \$30,000

Total due = 100,000 + 30,000 = \$130,000

Simple and Compound Interest Compound Interest Interest is based on principal plus all accrued interest That is, interest compounds over time

Interest = (principal + all accrued interest) (interest rate)

Interest for time period t is

$$I_t = \left(P + \sum_{j=1}^{j=t-1} I_j\right)(i)$$

Compound Interest Example Example: \$100,000 lent for 3 years at <i>i</i> = 10% per year compounded. What is repayment after 3			
		years?	
		Interest, year 1:	I ₁ = 100,000(0.10) = \$10,000
Total due, year 1:	T ₁ = 100,000 + 10,000 = \$110,000		
Interest, year 2:	I ₂ = 110,000(0.10) = \$11,000		
Total due, year 2:	T ₂ = 110,000 + 11,000 = \$121,000		
Interest, year 3:	I ₃ = 121,000(0.10) = \$12,100		
Total due, year 3:	T ₃ = 121,000 + 12,100 = \$133,100		
Compounded: \$133,100 Simple: \$130,000			

1-15

Minimum Attractive Rate of Return

- MARR is a reasonable rate of return (percent) established for evaluating and selecting alternatives
- An investment is justified economically if it is expected to return at least the MARR
- Also termed hurdle rate, benchmark rate and cutoff rate

MARR Characteristics

- MARR is established by the financial managers of the firm
- MARR is fundamentally connected to the cost of capital
- Both types of capital financing are used to determine the weighted average cost of capital (WACC) and the MARR
- MARR usually considers the risk inherent to a project

Types of Financing

- Equity Financing –Funds either from retained earnings, new stock issues, or owner's infusion of money.
- Debt Financing –Borrowed funds from outside sources – loans, bonds, mortgages, venture capital pools, etc. Interest is paid to the lender on these funds

For an economically justified project

ROR ≥ MARR > WACC

- Definition: Largest rate of return of all projects not accepted (forgone) due to a lack of capital funds
- If no MARR is set, the ROR of the first project not undertaken establishes the opportunity cost

Example: Assume MARR = 10%. Project A, not funded due to lack of funds, is projected to have $ROR_A = 13\%$. Project B has $ROR_B = 15\%$ and is funded because it costs less than A

Opportunity cost is 13%, i.e., the opportunity to make an additional 13% is forgone by not funding project A

Single Payment Factors (F/P and P/F)

Cash flow diagrams are as follows:

Single payment factors involve only P and F.

 $F = P(1 + i)^{n}$ $F = P(1 + i)^{n}$

Terms in parentheses or brackets are called *factors*. Values are in tables for i and n values

Factors are represented in standard factor notation such as (F/P,i,n),

where letter to left of slash is what is sought; letter to right represents what is given

F/P and P/F for Spreadsheets

Future value F is calculated using FV function: = FV(i%,n,P)

Present value P is calculated using PV function: = PV(i%,n,F)

Note the use of double commas in each function

Example: Finding Future Value

A person deposits \$5000 into an account which pays interest at a rate of 8% per year. The amount in the account after 10 years is closest to:

(A) \$2,792 (B) \$9,000 (C) \$10,795 (D) \$12,165

The cash flow diagram is:

Solution:

- F = P(F/P, i, n)
 - = 5000(F/P,8%,10)
 - = 5000(2.1589)
 - = \$10,794.50

Answer is (C)

Example: Finding Present Value

A small company wants to make a single deposit now so it will have enough money to purchase a backhoe costing \$50,000 five years from now. If the account will earn interest of 10% per year, the amount that must be deposited now is nearest to:

(A) \$10,000 (B) \$31,050 (C) \$33,250 (D) \$319,160

The cash flow diagram is:

Solution:

- $\mathbf{P} = \mathbf{F}(\mathbf{P}/\mathbf{F},\mathbf{i},\mathbf{n})$
 - = 50,000(P/F,10%,5)
 - = **50,000(0.6209**)
 - = \$31,045

Answer is (B)

Uniform Series Involving P/A and A/P

The uniform series factors that involve **P** and **A** are derived as follows:

- (1) Cash flow occurs in *consecutive* interest periods
- (2) Cash flow amount is *same* in each interest period

The cash flow diagrams are:

P = A(P/A, i, n) \iff Standard Factor Notation \implies A = P(A/P, i, n)

Note: P is one period Ahead of first A value

Example: Uniform Series Involving P/A

A chemical engineer believes that by modifying the structure of a certain water treatment polymer, his company would earn an extra \$5000 per year. At an interest rate of 10% per year, how much could the company afford to spend now to just break even over a 5 year project period?

(A) \$11,170 (B) 13,640 (C) \$15,300 (D) \$18,950

The cash flow diagram is as follows:

Solution:

$$P = 5000(P/A, 10\%, 5)$$

- = 5000(3.7908)
- = \$18,954

Answer is (D)

Uniform Series Involving F/A and A/F

The uniform series factors that involve **F** and **A** are derived as follows:

- (1) Cash flow occurs in *consecutive* interest periods
- (2) Last cash flow occurs in *same* period as F

Cash flow diagrams are:

 $F = A(F/A, i, n) \iff$ Standard Factor Notation $\implies A = F(A/F, i, n)$

Note: F takes place in the same period as last A

Example: Uniform Series Involving F/A

An industrial engineer made a modification to a chip manufacturing process that will save her company \$10,000 per year. At an interest rate of 8% per year, how much will the savings amount to in 7 years?

(A) \$45,300 **(B)** \$68,500 (C) \$89,228 (D) \$151,500 Solution: F = ? The cash flow diagram is: F = 10,000(F/A,8%,7)i = 8%= 10,000(8.9228)0 1 2 3 4 5 6 = \$89,228 Answer is (C) A = \$10,000

Factor Values for Untabulated i or n

3 ways to find factor values for untabulated i or n values

Use formula
 Use spreadsheet function with corresponding P, F, or A value set to 1
 Linearly interpolate in interest tables

Formula or spreadsheet function is fast and accurate Interpolation is only approximate

Example: Untabulated i

Determine the value for (F/P, 8.3%,10)

Formula: $F = (1 + 0.083)^{10} = 2.2197$ OK Spreadsheet: = FV(8.3%, 10, 1) = 2.2197 OK Interpolation: 8% ----- 2.1589 8.3% ----- X 9% ----- 2.3674 x = 2.1589 + [(8.3 - 8.0)/(9.0 - 8.0)][2.3674 - 2.1589] = 2.2215 (Too high)

Absolute Error = 2.2215 - 2.2197 = 0.0018

Arithmetic Gradients

Arithmetic gradients change by the same amount each period

The cash flow diagram for the P_G of an arithmetic gradient is:

G starts between periods 1 and 2 (not between 0 and 1)

This is because cash flow in year 1 is usually not equal to G and is handled separately as a *base amount* (shown on next slide)

Note that P_G is located Two Periods Ahead of the first change that is equal to G

Typical Arithmetic Gradient Cash Flow

Converting Arithmetic Gradient to A

Arithmetic gradient can be converted into equivalent A value using G(A/G,i,n)

Example: Arithmetic Gradient

The present worth of \$400 in year 1 and amounts increasing by \$30 per year through year 5 at an interest rate of 12% per year is closest to:

= \$453.24

Geometric Gradients

Geometric gradients change by the same percentage each period

There are no tables for geometric factors

Use following equation for $g \neq i$:

 $P_g = A_1 \{1 - [(1+g)/(1+i)]^n\}/(i-g)$

where: A_1 = cash flow in period 1 g = rate of increase

If g = i, $P_g = A_1 n/(1+i)$

Note: If g is negative, change signs in front of both g values

Example: Geometric Gradient

Find the present worth of \$1,000 in year 1 and amounts increasing by 7% per year through year 10. Use an interest rate of 12% per year.

(a) \$5,670 (b

(b) \$7,333 (c) \$12,670

(d) \$13,550

Solution:

 $P_g = 1000[1-(1+0.07/1+0.12)^{10}]/(0.12-0.07)$ = \$7,333

Answer is (b)

To find A, multiply P_g by (A/P,12%,10)

Unknown Interest Rate i

Unknown interest rate problems involve solving for i, given n and 2 other values (P, F, or A)

(Usually requires a trial and error solution or interpolation in interest tables)

Procedure: Set up equation with all symbols involved and solve for i

A contractor purchased equipment for \$60,000 which provided income of \$16,000 per year for 10 years. The annual rate of return of the investment was closest to:

(a) 15% (b) 18% (c) 20% (d) 23%

Solution: Can use either the P/A or A/P factor. Using A/P: 60,000(A/P,i%,10) = 16,000(A/P,i%,10) = 0.26667

From A/P column at n = 10 in the interest tables, i is between 22% and 24% Answer is (d)

Unknown Recovery Period n

Unknown recovery period problems involve solving for n, given i and 2 other values (P, F, or A)

(Like interest rate problems, they usually require a trial & error solution or interpolation in interest tables)

Procedure: Set up equation with all symbols involved and solve for n

A contractor purchased equipment for \$60,000 that provided income of \$8,000 per year. At an interest rate of 10% per year, the length of time required to recover the investment was closest to:

(a) 10 years (b) 12 years (c) 15 years (d) 18 years

Solution: Can use either the P/A or A/P factor. Using A/P:

60,000(A/P,10%,n) = 8,000

(A/P,10%,n) = 0.13333

From A/P column in i = 10% interest tables, n is between 14 and 15 years Answer is (c)

Summary of Important Points

- In P/A and A/P factors, P is one period ahead of first A
- In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and A/F factors, F is in same period as last A In F/A and F/
- To find untabulated factor values, best way is to use *formula or spreadsheet*
- For arithmetic gradients, gradient G starts between *periods 1 and 2*
- Arithmetic gradients have 2 parts, base amount (year 1) and gradient amount
- For geometric gradients, gradient g starts been *periods 1 and 2*
- In geometric gradient formula, A₁ is amount in *period* 1
 - To find unknown i or n, set up equation involving all terms and solve for i or n